Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation.

نویسندگان

  • Rajagopal V Sekhar
  • Sanjeet G Patel
  • Anuradha P Guthikonda
  • Marvin Reid
  • Ashok Balasubramanyam
  • George E Taffet
  • Farook Jahoor
چکیده

BACKGROUND Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood. OBJECTIVE We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress. DESIGN Eight elderly and 8 younger subjects received stable-isotope infusions of [2H(2)]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F(2)-isoprostanes) were measured. Elderly subjects were restudied after 2 wk of glutathione precursor supplementation. RESULTS Compared with younger control subjects, elderly subjects had markedly lower RBC concentrations of glycine (486.7 ± 28.3 compared with 218.0 ± 23.7 μmol/L; P < 0.01), cysteine (26.2 ± 1.4 compared with 19.8 ± 1.3 μmol/L; P < 0.05), and glutathione (2.08 ± 0.12 compared with 1.12 ± 0.18 mmol/L RBCs; P < 0.05); lower glutathione fractional (83.14 ± 6.43% compared with 45.80 ± 5.69%/d; P < 0.01) and absolute (1.73 ± 0.16 compared with 0.55 ± 0.12 mmol/L RBCs per day; P < 0.01) synthesis rates; and higher plasma oxidative stress (304 ± 16 compared with 346 ± 20 Carratelli units; P < 0.05) and plasma F(2)-isoprostanes (97.7 ± 8.3 compared with 136.3 ± 11.3 pg/mL; P < 0.05). Precursor supplementation in elderly subjects led to a 94.6% higher glutathione concentration, a 78.8% higher fractional synthesis rate, a 230.9% higher absolute synthesis rate, and significantly lower plasma oxidative stress and F(2)-isoprostanes. No differences in these measures were observed between younger subjects and supplemented elderly subjects. CONCLUSIONS Glutathione deficiency in elderly humans occurs because of a marked reduction in synthesis. Dietary supplementation with the glutathione precursors cysteine and glycine fully restores glutathione synthesis and concentrations and lowers levels of oxidative stress and oxidant damages. These findings suggest a practical and effective approach to decreasing oxidative stress in aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutathione Synthesis Is Diminished in Patients With Uncontrolled Diabetes and Restored by Dietary Supplementation With Cysteine and Glycine

OBJECTIVE Sustained hyperglycemia is associated with low cellular levels of the antioxidant glutathione (GSH), which leads to tissue damage attributed to oxidative stress. We tested the hypothesis that diminished GSH in adult patients with uncontrolled type 2 diabetes is attributed to decreased synthesis and measured the effect of dietary supplementation with its precursors cysteine and glycine...

متن کامل

Effects of Crocin Supplementation during In Vitro Maturation of Mouse Oocytes on Glutathione Synthesis and Cytoplasmic Maturation

Objective Crocin is an active ingredient of saffron (Crocus sativus L.) and its antioxidant properties have been previously investigated. This carotenoid scavenges free radicals and stimulates glutathione (GSH) synthesis; consequently, it may protect cells against oxidative stress. The aim of this research is to protect oocytes from oxidative stress by the addition of a natural source antioxida...

متن کامل

Oxidative stress and ageing: is ageing a cysteine deficiency syndrome?

Reactive oxygen species (ROS) are constantly produced in biological tissues and play a role in various signalling pathways. Abnormally high ROS concentrations cause oxidative stress associated with tissue damage and dysregulation of physiological signals. There is growing evidence that oxidative stress increases with age. It has also been shown that the life span of worms, flies and mice can be...

متن کامل

Glutathione metabolism and its implications for health.

Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is the most abundant low-molecular-weight thiol, and GSH/glutathione disulfide is the major redox couple in animal cells. The synthesis of GSH from glutamate, cysteine, and glycine is catalyzed sequentially by two cytosolic enzymes, gamma-glutamylcysteine synthetase and GSH synthetase. Compelling evidence shows that GSH synthesis is regulated ...

متن کامل

Therapeutic Effect of Deferasirox and Glycine on Chronic Cadmium Toxicosis in Rats

Objective: It has been shown that deferasirox can reduce blood and tissues lead content in animal models. In this study the effect of deferasirox alone or combined with glycine as an antioxidant was evaluated in chronic cadmium toxicosis in rat. Methods: Male wistar albino rats were exposed to 200 ppm cadmium in the drinking water for 3 weeks and treated thereafter with deferasirox (140 mg/kg),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of clinical nutrition

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2011